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Abstract. Transformers play a key role in the transmission and distribution of power systems. 

Diagnostic faults of the power transformer is very important to ensure safe and stable operation 

of the power system. The objective of this article is to show methods for deep learning already 

applied in transformer differential protection and to share summary results of these methods. 

The methods addressed are Accelerated Convolutional Neural Network, Signal Localised 

Convolutional Neural Network, Fast GRNN and Dynamic Differential Current in real time with 

CNN. In the analysis of the articles, many analyses were carried out in different cases, with 

accuracy well above 95%, where in some cases it reached more than 99.5%. Therefore, the deep 

learning methods presented are effective and accurate, enabling for possible more advanced 

studies. 
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1. Introduction 

The transformer plays a key role in the 
transmission and distribution of the power system, 
so the safe operation of the transformer directly 
affects the stability of the entire power system. 
Therefore, fault diagnosis of the power transformer 
is very important to ensure safe and stable operation 
of the power system [1]. A differential system can 
effectively protect a transformer because of the 
inherent reliability of the relays, which are highly 
efficient in operation, and the fact that equivalent 
ampere turns are developed in the primary and 
secondary windings of the transformer. The CTs on 
the primary and secondary sides of the transformer 
are connected in such a way that they form a 
circulating current system. Faults on the terminals or 
in the windings are within the transformer 
protection zone and should be cleared as quickly as 
possible. Although differential protection is very 
reliable for protecting power transformers, windings 
are not always fully protected, especially in the case 
of single-phase faults [2].  

With the increasing complexity in time and 
memory of power system applications, the need for 
advanced statistical pattern recognition tools has led 
to the use of deep learning methodologies Clique ou 
toque aqui para inserir o texto. deep learning 
application can be thought of to solve problems 
related to transformer differential protection.  

The objective of this article is to show methods 
for deep learning already applied in the transformer 
differential protection and to try to apply the 
methods addressed to solve the problem pertinent in 
transformer delta/star in which the star winding has 
been earthed via resistor. It is a well-known fact that 
overall phase differential protection cannot protect a 
large portion of an impedance-ground delta-star 
transformer [4]. 

2. Methodology 

2.1 Theoretical Development 

The book [2] deals with the problem described 
in the Introduction, follows the deduction of the 
problem below second the book: 

Consider the case of a delta/star transformer in 
which the star winding has been earthed via a 
resistor. Assume that an internal earth fault occurs at 
point F at a distance X from the neutral point, 
involving X% turns, and that the resistor has been set 
so that normal current 𝐼𝑛𝑜𝑚 will flow for a fault on the 
terminals (with full line-to-neutral voltage applied 
between phase and earth). The numbers of primary 
and secondary turns are Np and 𝑁𝑠 , respectively. The 

secondary current for a fault at F is produced by X% 
of the line-to-neutral voltage. Therefore, by direct 
ratio, the current will be 𝑋𝐼𝑛𝑜𝑚. In addition, the 
number of turns involved in the fault is 𝑋𝑁𝑠 . The 
distribution of current in the delta side for an earth 
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fault on the star side results in a line current 𝐼𝐿
′  equal 

to the phase current [2]. Therefore, 

𝐼𝐿
′ = 𝑋𝐼𝑛𝑜𝑚 x (

𝑋𝑁𝑠

𝑁𝑝
) = 𝑋2𝐼𝑛𝑜𝑚 (

𝑁𝑠

𝑁𝑝
)  2.1 

Under normal conditions, the line current in the delta 
side, 𝐼𝐿 , is 

𝐼𝐿 = √3𝐼𝑛𝑜𝑚 x (
𝑁𝑠

𝑁𝑝
)   2.2 

If the differential relay is set to operate for 20% of the 
nominal line current, then, for operation of the relay, 
the following should apply: 

𝐼𝐿
′ ≥ 0.2 x 𝐼𝐿     2.3 

That is, 

𝑋2𝐼𝑛𝑜𝑚 (
𝑁𝑠

𝑁𝑝
) ≥ 0.2 x √3 x 𝐼𝑛𝑜𝑚 x (

𝑁𝑠

𝑁𝑝
) 2.4 

𝑋2 ≥ 0.2√3, i.e. 𝑋 ≥ 59% 

Therefore, 59% of the secondary winding will 
remain unprotected. It should be noted that 
protecting 80% of the winding (𝑋 ≥ 0.2) would 
require an effective relay setting of 2.3% of the 
nominal primary current. This level of configuration 
can be very difficult to achieve with certain types of 
differential relays [2]. 

2.2 Deep Learning Methods 

Deep-learning methods are representation-
learning methods with multiple levels of 
representation, obtained by composing simple but 
non-linear modules that each transform the 
representation at one level (starting with the raw 
input) into a representation at a higher, slightly more 
abstract level. With the composition of enough such 
transformations, very complex functions can be 
learnt [5]. 

This part is responsible for showing a brief 
summary to different methods for deep learning 
applied in the Power Transformer Differential 
Protection. 

2.2.1 Accelerated Convolutional Neural 
Network (CNN) 

In this cited article, an approach based on an 
accelerated convolutional neural network (CNN) is 
designed to discriminate between internal faults and 
inrush current [6]. 

The basic CNN is a type of deep learning 
network, which inherently extracts features based on 
the convolution operator. The basic CNN utilises 
conventional activation functions, such as the 
sigmoid activation function, which requires 
computing an exponent. This is a huge disadvantage 
when dealing with high non-linearity and can 
significantly increase training and evaluation times 
[6]. 

An accelerated CNN as a fast and compact 
version of the CNN is developed in the cited article to 

reduce both training and evaluation times, which 
performs on the basis of minimising the 
approximation error and decomposing the 
parameters of individual convolution layers and fully 
connected layers. This proposed algorithm also has 
the ability to merge feature extraction and fault 
detection blocks into a single deep neural network 
block, allowing the network to discover important 
features automatically, making the algorithm more 
efficient in terms of speed, hardware usage, and 
precision [6]. 

2.2.2 Signal Localised Convolution Neural 
Network (SLCNN) 

This method approached in the cited article 
uses the distinct signal localisation, which is 
performed with the convolution process sequentially 
on the frequency and time coefficients which are 
obtained from the wavelet decomposition of the 
differential current signal [7].  

Unlike a fully connected network, the network 
connection between the layers in the CNN has a 
localised region. The localisation on frequency and 
time information is made on the time-frequency 
spectrum as a spatial localisation, where the time 
domain signal is processed by the time-frequency 
transformation technique. It is essential to use a 
suitable dimension for the filter weight 
corresponding to each decomposition level, because 
the dimension of the time frequency is an irregular 
matrix, and therefore each level has a dissimilar 
number of coefficients. This results in an equal 
number of coefficients in each level of the second 
hidden layer. The convolution operation with the 
nonlinear activation function is performed between 
the time-frequency spectrum of the signal and 
shared filter weights. It means the extraction of 
features as performed on the respective frequency 
scale corresponding to time [7]. 

The results of convolution are obtained as the 
elements of the succeeding layer without a pooling 
operation. Generally, the pooling process is involved 
after the convolution process in each layer to reduce 
the size of the data. Here, the pooling process is not 
incorporated as the size of the matrix does not incur 
a substantial burden for signal processing 
applications. Hence, a set of feature mapping filters is 
used between any two layers to extract useful 
features of the signal [7]. 

The filter weights of each feature mapping in the 
second layer have a single column vector, which 
represents the feature extraction with an 
accumulation of all frequency features in the time 
scale. The convolution operation with the non-linear 
activation function is performed between the second 
layer elements and a shared filter weight vector, 
thereby it produces the output equal number of time 
scale in higher level decomposition (sixth level 
coefficients). This approach demonstrates the 
feature mapping on the time scale. Further, the 
output of each feature in the second layer is 
organized in a single vector, which is represented as 



 

elements of the third layer. Finally, the third layer is 
fully connected with the output layer as in the 
conventional neural network. Therefore, the output 
layer of the SLCNN has two neurones for the required 
classification of the trip and the restriction decision 
[7]. 

2.2.3 Fast GRNN 

The differential protection in the power 
transformer should be able to perform based on raw 
data and fully learn the temporal features and 
changes in the transient signal, because the 
differential protection in the power transformer was 
always threatened by sending false trips subjected to 
external transient disturbances [8]. 

To propose a diagnosis scheme to implement a 
differential protection in real time, the cited article 
develops a GRU-based structure. GRU (gated 
recurrent unit) is the removal of one of the three 
gates in the LSTM (long short-term memory) 
structure, making it another faster and more 
accurate structure. It generally consists of two main 
ports, the update gate and the reset gate. To decrease 
the computational burden as well as improve the 
accuracy and reliability of the differential protection, 
the reset gate has been removed, thereby, the 
computational complexity has reduced by almost 
42%, in the diagnosis process. This process is called 
FGRNN (fast gated recurrent neural network) [8]. 

The designed FGRNN, in the cited article, does 
not neglect the transient behaviour of internal faults, 
unlike the GRU, which neglects transient phenomena 
such as inrush current and internal faults in power 
transformers in the training process, by completely 
resetting the network. Learning sudden changes in 
the power transformers that can be beneficial in the 
discrimination process is fully fulfilled in the 
designed FGRNN network, as well as learning fully 
temporal features [8]. 

2.2.4 Dynamic Differential Current-Based 
Transformer Protecton Using CNN 

The dynamic differential current is presented in 
the cited article, with the objective of improving the 
generalisation performance and response speed of 
the multi-feature fusion-based transformer 
protection. The dynamic differential current merges 
the pre-disturbance and post-disturbance 
differential currents in real time, then develops a 
transformer protection based on dynamic 
differential current focussing on the characteristic 
changes of the differential current [9]. 

The image of differential current can 
comprehensively embody the feature changes 
resulting from any disturbance. In addition, a short 
window is sometimes sufficient to clearly reflect the 
internal fault because the differential current will 
change instantly when an internal fault occurs [9]. 

In order to identify the running states reliably in 
the shortest possible time, multiple images, which 
include the differential current from pre-disturbance 

one cycle to post-disturbance different time, are 
combined in order of time to define a dynamic 
differential current. The dynamic differential current 
serves as an input of CNN to identify the running 
states in real time, second the article [9]. 

3. Result and Discussion 

The results presented below are a summary of 
each article cited, with their respective credits for the 
development of their work, simulations, and tests. 

3.1 Accelerated CNN 

Second, in the cited article, different cases with 
various external factors are simulated to calculate 
reliability indexes. Applied to a simulated 230-kV 
network and an experimental prototype. Five cases 
are discussed to address the advantages of the 
proposed differential protection scheme [6]. The 
cases are as follows:  

1- simple benchmark; 

2- CT saturation caused by fault or inrush 
current; 

3- power transformer with series capacitor 
compensation; 

4- Transformer with SFCL at neural point; 

5- Experimental setup. 

In Table 1 shows the minimal results in all the 
indexes classified by for each case cited in the article, 
where in certain cases the proposed method 
operates completely correctly with 100% 
performance [6]. 

Table 1 – Minimal results in all the indexes classified by 
for each case cited. 

Cases 1 2 3 4 5 

Minimal 
results 
(%) 

98.46 99.17 98.46 97.70 98.46 

 

In the article cited, an accelerated CNN was 
designed using the product quantisation technique 
to speed up the convolution and FCN layers. The 
accelerated CNN performs four times as fast as the 
basic CNN, not only without losing accuracy but also 
with an improvement of about 1% accuracy. The 
proposed machine learning-based protection 
method can be applied to different systems, 
regardless of system parameters once the CNN 
structure is set [6]. 

3.2 SLCNN 

Second, in the cited article, three power 
transformer (frequency 50Hz) test systems are 
considered for evaluation of the proposed SLCNN 
where the training patterns of each transformer are 
generated for various operating conditions. This is 
shown in Table 2 the specifications of the power 
transformers [7]. 



 

 

 

Table 2 – Power transformers specifications 

 Power 

(MVA) 

Ratio (kV) %Z Conn 

PT-
1 

40 132/11.5 13.56 Dyn11 

PT-
2 

50 132/12 35.64 YNd1 

PT-
3 

100 230/110/11 11.41 YNynd1 

 

The performance of SLCNN based relay is 
evaluated in terms of accuracy, sensitivity, and 
specificity. It is shown in Table 3, also shown in more 
detail and compared with different methods in the 
article [7], The cases are: 

1- Internal fault; 

2- internal fault with inrush current; 

3- Internal fault with CT saturation; 

4- internal fault with inrush and CT 
saturation; 

5- Inrush current; 

6- Sympathetic inrush current; 

7- CT saturation due to an external fault. 

Table 3 – Performance of SLCNN. 

 PT-1 PT-2 PT-3 PTs 

Accuracy (%) 99.52 99.20 99.20 99.31 

Sensitivity (%) 99.54 99.07 99.31 99.31 

Specificity (%) 99.48 99.48 99.96 99.31 

 

The SLCNN classifies almost all patterns 
correctly with an accuracy of 99.31% for all testing 
samples. However, the false classification is 0.69% 
which occurs due to the simultaneous occurrence of 
events of internal fault, inrush current, and CT 
saturation caused by an external fault. In a practical 
scenario, these simultaneous occurrences of events 
are very rare. Thus, it offers an effective method of 
classification for both multiple events and single 
events of internal fault, inrush current, sympathetic 
inrush current, and CT saturation due to an external 
fault [7]. 

3.3 Fast GRNN 

Five case studies are discussed in the cited 
article, to investigate the superiority of the proposed 

differential protection technique. Case studies are 
briefly as follows: 

1. A simple case without external factors; 

2. Differential protection in the presence of CT 
saturation; 

3. Series capacitor compensation; 

4. transformer with SFCL on the neutral point; 

5. Experimental prototype. 

Different fault types, fault location, switching 
angles, transformer winding types, and source 
impedances are used to generate data sets for the 
case studies mentioned, simulating in a 230kV 
network [8]. 

In Table 4 shows the minimal results in all the 
indexes classified by for each case cited in the article, 
where in certain cases, the proposed method 
operates completely correctly with 100% 
performance [8]. 

Table 4 – Minimal results in all the indexes classified by 
for each case cited. 

Cases 1 2 3 4 5 

Minimal 
results 
(%) 

98.47 99.17 98.51 96.97 97.16 

 

The results of the robust FGRNN method show 
that the proposed method has an average 
computational time of less than 6.5ms [8]. 

3.4 Dynamic Differential Current 

In the study to the article cited, the training and 
test samples were both collected in PSCAD. The 
PSCAD simulation has fully considered the influences 
of the transformer parameters and scenarios on the 
features of dynamic differential current. The 
transformer parameters of the training and test 
samples are completely different from each other to 
improve and verify the generalisability of the 
proposed protection method [9]. 

 Ratio 
(kV) 

Sampling 
Frequency 

(kHz) 

Conn 

PT-1 230/11 20 Y/ Δ-11 

PT-2 230/35 20 Y/ Δ-11 

PT-TEST 35/500 4 Δ / Y-11 

 

The dynamic model experiments verified that 
the accuracy of experimental scenarios reached 
99.10% for all running states, with the average 
window length of 1ms and 10.14ms for internal fault 
and faulty transformer energization, respectively [9]. 



 

4. Conclusions 

Power transformer fault diagnosis is very 
important to ensure the safe and stable operation of 
the power system, because safe operation of the 
transformer directly affects the stability of the entire 
power system, and a power transformer is a 
fundamental part of the energy transmission and 
distribution system. Although differential protection 
is reliable and widely used in transformer protection, 
in some cases the transformer windings are not fully 
protected, resulting in the need to use more 
advanced methods to solve these problems, in this 
case, deep learning. 

In the articles analysed, many analyses were 
carried out in different cases, where it was observed 
that the application of deep learning in the 
differential protection of transformers has a very 
high accuracy, well above 95%, and in some cases 
reaching more than 99.5%. 

Therefore, it is concluded that the deep learning 
methods presented are effective and accurate, 
enabling possible more advanced studies, especially 
in the case of the delta/star connection problem 
grounded with a resistor in a single-phase fault. 
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